If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-135=0
a = 6; b = 0; c = -135;
Δ = b2-4ac
Δ = 02-4·6·(-135)
Δ = 3240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3240}=\sqrt{324*10}=\sqrt{324}*\sqrt{10}=18\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{10}}{2*6}=\frac{0-18\sqrt{10}}{12} =-\frac{18\sqrt{10}}{12} =-\frac{3\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{10}}{2*6}=\frac{0+18\sqrt{10}}{12} =\frac{18\sqrt{10}}{12} =\frac{3\sqrt{10}}{2} $
| 3e=42 | | 7+12x=12+18x-6x | | 14x-(7x+5)=7x+8 | | 3-(2x+7)=30 | | 18+n=-7 | | 104=8(5x+8) | | Y=15x+15.50 | | 4x^2+11x=-5 | | 1.2x+9.2=1.8x+2 | | Y=1.25x+500 | | 3x+5/2=7` | | (3x+5)/2=7` | | y-8-4=0 | | 6x-19=3x=32 | | 20-x/4=16 | | 2^(x+2)+2^(x)=320 | | 6x-9x-4x=-8+4+3 | | 6x-9x-4x=-8+4+3 | | 98.99=x+0.10(x) | | 6x-9x-4x=-8+4+3 | | 98.99=x+0.10 | | 98.99=x+0.10x-0.07.5 | | 98.99=x+0.10x-0.07.5(x) | | 5x+6x=71 | | 5x+6x=71 | | 5x+6x=71 | | 5x+6x=71 | | 5x+6x=71 | | 5x+6x=71 | | 5x+6x=71 | | 5x+6x=71 | | 5x+6x=71 |